ANALISIS PENJUALAN BAJU SERAGAM SEKOLAH DI KONVEKSI HANIFAH COLLECTION

Ahmad Fazarudin, Ahmad Nalhadi, Gerry Anugrah Dwiputra

Program Studi Teknik Industri, Fakultas Teknik, Universitas Serang Raya Email: fazarudinahmad8@gmail.com; irqi02@gmail.com; gerry.adp@gmail.com

Abstrak – Koleksi Hanifah merupakan perusahaan yang bergerak dalam bidang konveksi pakaian seragam sekolah. Jumlah permintaan setiap bulan yang berfluktuatif membuat permasalahan tersendiri dalam menentukan jumlah produksi. Penelitian ini bertujuan mencari metode yang sesuai dengan pola data yang sebagai dasar penentuan jumlah produksi di periode berikutnya. Metode yang digunakan dalam penelitian ini adalah metode peramalan Moving Average, Exponential Smoothing dan Triple Exponential Smoothing dengan parameter tingkat kesalahan dari masingmasing metode menggunakan menggunakan MAD, MSE dan MAPE. Dari hasil penelitian ini ada metode moving average dengan metode yang paling tepat dalam menentukan peramalan permintaan pada periode berikutnya dengan nilai nilai MAD sebesar 172.22, MSE sebesar 46624.34 dan MAPE 46624.34.

Kata kunci: Exponential Smoothing; Moving Average; Triple Exponential Smoothing

Abstract -- Hanifah Collection is a company engaged in the convection of school uniforms. The fluctuating number of requests each month creates its problems in determining the amount of production. This study aims to find a method that matches the data pattern as the basis for determining the amount of output in the next period. The technique used in this study is the forecasting method of Moving Average, Exponential Smoothing and Triple Exponential Smoothing with parameter level errors of each way using MAD, MSE, and MAPE. From the results of this study, there is a moving average method with the most appropriate method in determining demand forecasting in the next period with a value of MAD of 172.22, MSE of 46624.34 and MAPE 46624.34.

Keywords: Exponential Smoothing; Moving Average; Triple Exponential Smoothing

PENDAHULUAN

Sebuah perusahaan didirikan mempunyai tujuan untuk menghasilkan barang dan jasa yang menjadi kebutuhan konsumen dan sekaligus untuk mendapatkan keuntungan dari usaha tersebut. Selain untuk mendapatkan keuntungan juga bertujuan untuk membantu pemerintah dalam mengurangi angka pengangguran dengan membuka lapangan pekerjaan serta bertujuan mempertahankan dan meningkatkan kelangsungan hidup perusahaan di masa yang akan datang. Untuk mewujudkan itu semua, pemimpin perusahaan harus menetapkan suatu kebijakan yang tepat dalam mengelola perusahaan .

Konveksi Hanifah *Collection* terletak di pinggiran Kota Serang. Bergerak dalam industri pembuatan baju seragam sekolah. Konveksi tersebut memproduksi baju seragam sekolah putih dan pramuka SD,SMP serta SMA. Konveksi Hanifah *Collection* dalam memproduksi berdasarkan pesanan atau *supplier*. Perusahaan

harus mempunyai konsep pengembangan sehingga perusahaan dapat berkembang di masa mendatang.

Perusahaan memerlukan perencanaan produksi yang lebih baik untuk menjaga kepercayaan konsumen. Salah satu langkah yang dapat dilakukan dalam strategi penjualan adalah melakukan prediksi penjualan yang menjadi faktor pendukung bagi perusahaan untuk melakukan kegiatan-kegiatan menuju kearah perkembangan pada masa yang akan dating (Muqtadiroh, Syofiani, & Ramadhani, 2015).

Keputusan yang diambil seorang pemimpin akan mempengaruhi perusahaan dimasa yang akan datang. Pimpinan perusahaan harus mampu memprediksi permintaan produk di masa mendatang sehingga mampu memenuhi kebutuhan konsumen. Dalam membuat keputusan, pimpinan bersama pihak manajerial mampu membuat estimasi perkiraan kebutuhan di masa mendatang sehingga estimasi tersebut tidak terlalu jauh dari

DOI: http://dx.doi.org/10.30656/intech.v4i2.880

permintaan aktual di masa mendatang. Kegiatan untuk mengetahui atau memperkirakan apa yang akan terjadi pada masa yang akan datang dengan peramalan (forecasting) disebut (Wibowo, 2010)

Peramalan merupakan proses perencanaan kebutuhan di periode masa datang dengan mempertimbangkan sumber daya yang dimiliki dalam rangka memenuhi barang atau 2006: Render & Heizer. iasa (Nasution. 2005).Peramalan dilakukan bertujuan mengetahui perkiraan jumlah penjualan yang akan datang dan jumlah kesalahan ramalan, sehingga untuk memenuhi kebutuhan konsumen, manajemen perusahaan membuat peramalan penjualan produk

Pemilihan metode peramalan mempertimbangkan model data historis yang ada dalam suatu perusahaan. Model peramalan ratarata bergerak (moving average), atau pemulusan eksponensial (exponential smoothing) dapat digunakan untuk pola data yang tidak membentuk kecenderungan (Supriyadi Riskiyadi, 2016). Model peramalan ini telah banyak diimplementasikan dalam menunjang proyeksi di masa mendatang.(Djie, 2013; Jana, 2016; Marsetiani, 2014; Sanny & Sarjono, 2013).

Penelitian ini bertujuan memperkirakan kebutuhan produksi di periode berikutnya dengan menggunakan metode moving average dan exponential smoothina. Hasil pemilihan peramalan dapat dijadikan referensi bagi perusahaan dalam memperkirakan kebutuhan produksi di masa mendatang.

METODE PENELITIAN

Penelitian dilakukan di konveksi hanifah collection dengan menggunakan data penjualan produk selama Juni 2015 sampai mei 2017. Pengolahan data dilakukan dengan menggunakan metode single moving averages, exponential smoothing dan triple exponential smoothing winter's. Dari ketiga metode tersebut dipilih berdasarkan nilai Mean Absolute Deviation (MAD), Mean Square Error (MSE) dan Mean Absolute Percentage of Error (MAPE) terkecil.

moving average digunakan .Metode dalam memprediksi permintaan dengan cara melakukan perhitungan nilai rata-rata dari nilai permintaan sesungguhnya dari sejumlah periode sebelumnya. Setiap prediksi baru ditetapkan pada periode yang lama dan diganti dengan permintaan dari periode yang baru, sehingga data pada perhitungan berpindah sepanjang waktu sesuai dengan metode ini. Metode simple moving average digunakan untuk data yang bersifat tidak stabil, tidak memiliki trend dan tidak menggunakan pembobotan pada data.

$$F_{t+1} = \frac{1}{n} \sum_{i=t-n+1}^{t} A_i \tag{1}$$

 F_{t+1} : Prediksi untuk periode t + 1

: Jumlah periode yang digunakan untuk

menghitung moving average

: Nilai sesungguhnya pda periode i

Metode exponential smoothing merupakan peramalan metode menuniukkan yang pembobotan menurun secara eksponensial terhadap nilai pengamatan yang lebih lama. Terdapat satu atau lebih parameter penulisan yang ditentukan secara eksplisit, dan hasil pilihan ini menentukan bobot yang dikenakan pada nilai observasi (Makridakis, Wheelwright, & McGee, 1999).

$$\hat{Y}_{t+1} = \alpha Y_t + (1-\alpha) \hat{Y}_t$$
 (2)

Keterangan

: Nilai ramalan untuk periode selanjutnya \hat{Y}_{t+1}

: Konstanta pemulusan α

: Data baru nilai Y yang sebenarnya Y_t

pada periode t.

: Nilai pemulusan yang lama atau ratarata pemulusan hingga periode t - 1

Metode triple exponential smoothing winter's merupakan metode yang dapat menangani faktor musiman dan trend secara langsung. Keuntungan dari metode triple exponential smoothing winter's adalah memiliki yang sangat kemampuan baik dalam meramalkan data yang memiliki pola trend dan musiman (Makridakis et al., 1999).

a. Estimasi Level
$$\hat{L}_t = \alpha \frac{Y_t}{S_{t-1}} + (1-\alpha)(L_{t-1} + T_{t-1}) \tag{3}$$

b. Estimasi Trend

$$\hat{T}_t = \beta (L_t - L_{t-1}) + (1 - \beta) T_{t-1} \tag{4}$$

c. Estimasi Musiman

$$\hat{S}_t = \gamma \frac{Y_t}{L_t} + (1 - \gamma) S_{t-s} \tag{5}$$

d. Peramalan p periode mendatang

$$\hat{Y}_{t-p} = (L_t + pT_t)S_{t-s+p}$$
 (6)

 \hat{L}_t : Estimasi level pada akhir periode t

 α : Konstanta smoothing untuk estimasi level $(0 < \alpha < 1)$

 \widehat{T}_r : Estimasi trend pada akhir periode t

β: Konstanta smoothing untuk estimasi trend $(0 < \beta < 1)$

 \hat{S}_t : Estimasi musiman pada akhir periode t

 γ : Konstanta *smoothing* untuk estimasi musiman (0< γ < 1)

 \hat{Y}_t : Banyaknya penjualan pada periode t

s: Periode musiman

Langkah selanjutnya adalah menentukan nilai Mean Absolute Deviation (MAD), Mean Square Error (MSE) dan Mean Absolute Percentage of Error (MAPE). MAD merupakan rata-rata kesalahan mutlak selama periode tertentu tanpa memperhatikan apakah hasil peramalan lebih besar atau lebih kecil dibandingkan kenyataannya. Ukuran pertama kesalahan peramalan keseluruhan untuk sebuah model adalah MAD. Nilai ini dihitung dengan mengambil jumlah nilai absolut dari tiap kesalahan peramalan dibagi dengan jumlah periode data (n).

$$MAD = \frac{\sum |f_t - \hat{t}_t|}{m} \tag{7}$$

f_t : Data actual pada periode t
 f̂_t : Nilai peramalan periode t
 m : Banyaknya data ramalan

Mean Square Error (MSE) merupakan rataan selisih kuadrat antara nilai yang 19 diramalkan dan yang diamati. MSE merupakan metode alternatif dalam suatu metode peramalan. Pendekatan ini penting karena teknik ini menghasilkan kesalahan yang moderat lebih disukai oleh suatu peramalan yang menghasilkan kesalahan yang sangat besar. MSE dihitung dengan menjumlahkan kuadrat semua kesalahan peramalan pada setiap periode dan membaginya dengan jumlah periode peramalan.

$$MSE = \frac{\sum |f_{t} - \hat{f}_{t}|^{2}}{m}$$
 (8)

 $\begin{array}{ll} f_t & : \mbox{ Data actual pada periode } t \\ \hat{f}_t & : \mbox{ Nilai peramalan periode } t \\ m & : \mbox{ Banyaknya data ramalan} \end{array}$

Mean Absolute Percentage of Error (MAPE) merupakan ukuran kesalahan relatif dan menyatakan persentase kesalahan hasil peramalan terhadap permintaan aktual selama yang tertentu akan memberikan informasi persentase kesalahan terlalu tinggi atau terlalu rendah. Masalah yang terjadi dengan MAD dan MSE adalah bahwa nilainya tergantung pada besarnya unsur yang diramal. Jika unsur tersebut dihitung dalam satuan ribuan, maka nilai MAD dan MSE menjadi sangat besar. Untuk menghindari masalah ini, dapat menggunakan MAPE MAPE. dihitung sebagai rataan diferensiasi absolut antara nilai yang diramal dan aktual, dinyatakan sebagai persentase nilai aktual.

$$MAPE = \frac{\sum |f_{t} - \hat{f}_{t}|/f_{t} \times 100\%}{m}$$
 (9)

 $\begin{array}{ll} f_t & : \mbox{ Data actual pada periode } t \\ \hat{f}_t & : \mbox{ Nilai peramalan periode } t \\ \mbox{ m } & : \mbox{ Banyaknya data ramalan} \end{array}$

HASIL DAN PEMBAHASAN

Data yang digunakan dalam melakukan forecasting adalah menggunakan data penjualan selama Juni 2015 sampai mei 2017 (Tabel 1). Langkah selanjutnya adalah menggunakan ketiga metode peramalan untuk mendapatkan nilai Mean Absolute Deviation (MAD), Mean Square Error (MSE) dan Mean Absolute Percentage of Error (MAPE)..

Pengolahan data dalam penelitian ini menggunakan *moving average* 3 bulanan (Tabel 2), *exponential dengan* α = 0.2 (Tabel 3) dan *triple exponentialsmoothing winter's* (Tabel 4) Contoh perhitungan *moving average* 3 bulanan adalah sebagai berikut:

$$\hat{f}_{t} = \frac{f_{t-1} + f_{t-2} + f_{t-3}}{m}$$

$$\hat{f}_{25} = \frac{f_{24} + f_{23} + f_{22}}{3}$$

$$\hat{f}_{13} = \frac{1230 + 1400 + 1520}{3}$$

$$\hat{f}_{13} = 1383.3 \approx 1384$$

Untuk menghitung peramalan dengan menggunakan metode *Exponential Smoothing* peneliti mengasumsikan α= 0.2 dan hasil pengolahan data untuk metode ini adalah sebagai berikut:

$$\hat{f}t = (\alpha \times f_{t-1}) + ((1 - \alpha) \times \hat{f}_{t-1})$$

$$\hat{f}t = (\alpha \times f_{t-1}) + ((1 - \alpha) \times \hat{f}_{t-1})$$

$$\hat{f}_{25} = (0.2 \times 1520) + ((1 - 0.2) \times 1300.10)$$

$$\hat{f}_{13} = (304) + (0.8 \times 1300.10)$$

$$\hat{f}_{13} = (304) + (1040.08)$$

$$\hat{f}_{13} = 1344.08 \approx 1345$$

Langkah selanjutnya adalah menentukan nilai *Mean Absolute Deviation* (MAD), *Mean Square Error* (MSE) dan *Mean Absolute Percentage of Error* (MAPE). Perhitungan ini memerlukan data *Absolute Error*, nilai error pangkat dua (e²) dan nilai % error (e%).

Tabel 1. Data penjualan periode 2015-2017

Tahun	Bulan	Penjualan	Tahun	Bulan	Penjualan
2015	Juni	1150	2016	Juni	1740
2015	Juli	1100	2016	Juli	1650
2015	Agustus	1000	2016	Agustus	1540
2015	September	900	2016	September	1350
2015	Oktober	850	2016	Oktober	1280
2015	November	750	2016	November	1130
2015	Desember	750	2016	Desember	1270
2016	Januari	800	2017	Januari	1230
2016	Februari	1200	2017	Februari	1315
2016	Maret	1100	2017	Maret	1230
2016	April	1250	2017	April	1400
2016	Mei	1300	2017	Mei	1520

Tabel 2. Peramalan dengan moving average 3 bulanan

Bulan	Penjualan f _t	MA (3) \hat{f}_t	Eror	Eror	e ²	% Error
Juni	1150					
Juli	1100					
Agustus	1000					
September	900	1083.33	-183.33	183.33	33611.11	20.37
Oktober	850	1000.00	-150.00	150.00	22500.00	17.65
November	750	916.67	-166.67	166.67	27777.78	22.22
Desember	750	833.33	-83.33	83.33	6944.44	11.11
Januari	800	783.33	16.67	16.67	277.78	2.08
Februari	1200	766.67	433.33	433.33	187777.78	36.11
Maret	1100	916.67	183.33	183.33	33611.11	16.67
April	1250	1033.33	216.67	216.67	46944.44	17.33
Mei	1300	1183.33	116.67	116.67	13611.11	8.97
Juni	1740	1216.67	523.33	523.33	273877.78	30.08
Juli	1650	1430.00	220.00	220.00	48400.00	13.33
Agustus	1540	1563.33	-23.33	23.33	544.44	1.52
September	1350	1643.33	-293.33	293.33	86044.44	21.73
Oktober	1280	1513.33	-233.33	233.33	54444.44	18.23
November	1130	1390.00	-260.00	260.00	67600.00	23.01
Desember	1270	1253.33	16.67	16.67	277.78	1.31
Januari	1230	1226.67	3.33	3.33	11.11	0.27
Februari	1315	1210.00	105.00	105.00	11025.00	7.98
Maret	1230	1271.67	-41.67	41.67	1736.11	3.39
April	1400	1258.33	141.67	141.67	20069.44	10.12
Mei	1520	1315.00	205.00	205.00	42025.00	13.49
JUMLAH	28805	24808.33	746.667	3616.67	979111.11	296.9726

Tabel 3. Peramalan exponential dengan α = 0.2

Bulan	Penjualan f _t	\hat{f}_{t}	Eror	Eror	e ²	% Error
Juni	1150					
Juli	1100	1150	-50.00	50.00	2500.00	4.55
Agustus	1000	1140.00	-140.00	140.00	19600.00	14.00
September	900	1112.00	-212.00	212.00	44944.00	23.56
Oktober	850	1069.60	-219.60	219.60	48224.16	25.84
November	750	1025.68	-275.68	275.68	75999.46	36.76
Desember	750	970.54	-220.54	220.54	48639.66	29.41
Januari	800	926.44	-126.44	126.44	15985.86	15.80
Februari	1200	901.15	298.85	298.85	89312.42	24.90
Maret	1100	960.92	139.08	139.08	19343.66	12.64
April	1250	988.73	261.27	261.27	68259.49	20.90
Mei	1300	1040.99	259.01	259.01	67087.29	19.92
Juni	1740	1092.79	647.21	647.21	418880.41	37.20
Juli	1650	1222.23	427.77	427.77	182985.27	25.93
Agustus	1540	1307.79	232.21	232.21	53923.44	15.08
September	1350	1354.23	-4.23	4.23	17.88	0.31
Oktober	1280	1353.38	-73.38	73.38	5385.05	5.73
November	1130	1338.71	-208.71	208.71	43558.33	18.47
Desember	1270	1296.97	-26.97	26.97	727.11	2.12
Januari	1230	1291.57	-61.57	61.57	3791.12	5.01
Februari	1315	1279.26	35.74	35.74	1277.52	2.72
Maret	1230	1286.41	-56.41	56.41	3181.65	4.59
April	1400	1275.12	124.88	124.88	15593.79	8.92
Mei	1520	1300.10	219.90	219.90	48356.05	14.47
JUMLAH	28805	26684.60036	970.40	4321.44	1277573.62	368.81

Tabel 4 Peramalan triple exponential smoothing winter's

Bulan	Penjualan f _t	\hat{f}_{t}	Error	Error	e ²	% Error
Juni	1150	1655.321	-505.321	505.3209	255349.2613	0.43941
Juli	1100	1524.408	-424.408	424.408	180122.1316	0.385825
Agustus	1000	1336.577	-336.577	336.5773	113284.2902	0.336577
September	900	1163.451	-263.451	263.4507	69406.25177	0.292723
Oktober	850	924.8257	-74.8257	74.8257	5598.884691	0.08803
November	750	676.1839	73.81611	73.81611	5448.818575	0.098421
Desember	750	347.051	402.949	402.949	162367.905	0.537265
Januari	800	35.91924	764.0808	764.0808	583819.4154	0.955101
Februari	1200	501.2541	698.7459	698.7459	488245.7819	0.582288
Maret	1100	1050.081	49.91914	49.91914	2491.920175	0.045381
April	1250	1661.919	-411.919	411.9188	169677.0989	0.329535
Mei	1300	2544.422	-1244.42	1244.422	1548586.233	0.957248
Juni	1740	4729.01	-2989.01	2989.01	8934183.387	1.717822

Bulan	Penjualan f _t	\hat{f}_{t}	Error	Error	e^2	% Error
Juli	1650	6698.779	-5048.78	5048.779	25490172.66	3.059866
Agustus	1540	9074.384	-7534.38	7534.384	56766934.85	4.892457
September	1350	12486.27	-11136.3	11136.27	124016398.7	8.249085
Oktober	1280	17181.74	-15901.7	15901.74	252865323.9	12.42323
November	1130	24417.74	-23287.7	23287.74	542318796.4	20.60862
Desember	1270	39612.63	-38342.6	38342.63	1470157605	30.19105
Januari	1230	238580.8	-237351	237350.8	56335405449	192.9681
Februari	1315	20814.27	-19499.3	19499.27	380221668.5	14.82834
Maret	1230	21963.45	-20733.5	20733.45	429876021.9	16.85646
April	1400	37864.73	-36464.7	36464.73	1329676745	26.04624
Mei	1520	1655.321	-59838.8	59838.77	3580678630	30 36761

Tabel 4. Peramalan triple exponential smoothing winter's (Lanjutan)

Tabel 5. Nilai MAD, MSE dan MAPE

	MA	ES	TES
MAD	172.22	187.89	20140.75
MSE	46624.34	55546.68	2689166347
MAPE	14.14%	16.4%	15.67%

Dari hasil nilai Mean Absolute Deviation (MAD), Mean Square Error (MSE) dan Mean Absolute Percentage of Error (MAPE) (Tabel 5) terpilih moving average 3 bulanan dengan nilai 172,22 untuk MAD, 46624.34 untuk MSE dan 14.14% untuk nilai MAPE. Dengan menggunakan metode moving average 3 bulanan dapat dilakukan perkiraan penjualan Juni 2017 sebesar 1384 buah, bulan juli 2017 sebesar 1460 buah dan bulan agustus sebanyak 1520 buah.

KESIMPULAN

Berdasarkan hasil pengolahan data yang dilakukan, metode *moving average* 3 bulanan merupakan metode yang sesuai dengan pola data yang ada dibandingkan dengan metode *exponential* α= 0.2 dan *triple exponential smoothing winter's* dengan nilai MAS sebesar 172,22, MSE sebesar 46624.34 dan nilai MAPE 14.14%. Berdasarkan metode *moving average* 3 bulanan dapat dilakukan perkiraan penjualan Juni 2017 sebesar 1384 buah, bulan juli 2017 sebesar 1460 buah dan bulan agustus sebanyak 1520 buah

DAFTAR PUSTAKA

Djie, I. S. J. (2013). Analisis Peramalan Penjualan dan Penggunaan Metode Linear Programming dan Decision Tree Guna Mengoptimalkan Keuntungan pada PT Primajaya Pantes Garment. *The Winners*, 14(2), 113–119.

Jana, P. (2016). Aplikasi Triple Exponential Smoothing Untuk Forecasting Jumlah Penduduk Miskin. *Jurnal Derivat*, *3*(2), 76–81.

Makridakis, S., Wheelwright, S. C., & McGee, V. E. (1999). *Metode dan aplikasi peramalan*. Jakarta: Erlangga.

Marsetiani, M. (2014). Model Optimasi Penentuan Kombinasi Produk Menggunakan Metode Linear Programming pada Perusahaan Bidang Fashion. *The Winners*, *15*(1), 1–7.

Muqtadiroh, F. A., Syofiani, A. R., & Ramadhani, T. S. (2015). Analisis Peramalan Penjualan Semen Non-Curah (ZAK) PT Semen Indonesia (Persero) Tbk Pada Area Jawa Timur. In Seminar Nasional Teknologi Informasi dan Komunikasi (pp. 308–310).

Nasution, A. H. (2006). *Manajemen industri*. Yogyakarta: Penerbit Andi.

Render, B., & Heizer, J. (2005). *Manajemen Operasi*. Jakarta: Salemba Empat.

Sanny, L., & Sarjono, H. (2013). Peramalan Jumlah Siswa/I Sekolah Menengah Atas Swasta Menggunakan Enam Metode Forecasting. In *Forum Ilmiah* (Vol. 10, pp. 198–208).

Supriyadi, S., & Riskiyadi, R. (2016). Penjadwalan Produksi IKS-Filler Pada Proses Ground Calcium Carbonate Menggunakan Metode MPS Di Perusahaan Kertas. *Jurnal Ilmiah SINERGI*, 20(2), 157–164.

Wibowo, I. (2010). Analisis Peramalan Penjualan Rokok Golden Pada PT. Djitoe Indonesian Tobacco Coy Surakarta, *Skripsi*, Universitas Sebelas Maret.